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Introduction

Context
2011: Inception of third generation sequencing technologies

Two main technologies: Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT)

Sequencing of much longer reads, tens of kbps on average, up to
1Mb (ONT ultra-long reads)

Expected to solve various problem in the genome assembly field
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Introduction

Context
Long reads (LR) are very noisy (10-30% error rate)

Display complex error profiles (errors are mostly indels)

Efficient error correction is mandatory

Two main approaches: hybrid correction and self-correction
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Introduction

Hybrid correction

First efficient approach for LR error correction

Makes use of complementary short reads (SR) data

Different approaches: Alignment of SRs to the LRs, use of a De
Bruijn graph (DBG), ...

Particularly useful on old sequencing experiments (very high
error rates)
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Introduction

Self-correction
Corrects the LRs solely based on the information they contain

Third generation sequencing technologies evolve fast

Error rates of the LRs now reach 10-12% on average

Error correction still needed

Self-correction is now a viable alternative

Morisse et al. CONSENT 6/40



Introduction Workflow Experiments Conclusion

Introduction

Self-correction
State-of-the-art: Two main approaches

1 Compute overlaps between the LRs

2 Build a DBG from solid k -mers of the LRs (LoRMA
[Salmela et al., 2016])
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Introduction

Self-correction
Overlapping can be performed via:

Mapping (Canu [Koren et al., 2017], MECAT [Xiao et al., 2017],
FLAS [Bao et al., 2018])

Alignment (PBDAGCon [Chin et al., 2013], daccord
[Tischler and Myers, 2017])

Two main approaches are then used
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Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. CONSENT 9/40



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. CONSENT 9/40



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. CONSENT 9/40



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. CONSENT 9/40



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. CONSENT 9/40



Introduction Workflow Experiments Conclusion

Introduction

Contribution
We introduce CONSENT, a new self-correction method
combining both previous strategies:

Alignments are divided into windows

Windows consensus are computed using DAGs

Windows consensus are polished with the help of local DBGs

Compared to SOTA: Comparable results, better scalability
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Pre-treatment

Overlap the long reads

Via mapping, with Minimap2 [Li, 2018]
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First step: Retrieve alignment pile

Select a long read to correct

A
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First step: Retrieve alignment pile

Retrieve overlapping long reads

A
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First step: Retrieve alignment pile

Get the alignment pile

A

R1 R2

R3 R4

R5 R6
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First step: Retrieve alignment pile

Trim the alignment pile

A

R1 R2

R3 R4

R5 R6
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First step: Retrieve alignment piles

Trim the alignment pile

A

R1 R2

R3 R4

R5 R6
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Second step: Divide piles into windows

Definition

A window w = (beg,end) is a ”factor” of an alignment pile

Example

A

R1 R2

R3 R4

R5 R6

beg end
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Second step: Divide piles into windows

For correction, we will only consider windows w = (beg,end) such as:

end−beg+1 = l

∀i,beg ≤ i ≤ end , i is covered by at least c reads

Example

On the previous example, with c = 4:

A

R1 R2

R3 R4

R5 R6
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Third step: Compute consensus of a window

2. Compute consensus

Compute multiple sequence alignment (MSA) of these sequences

Compute consensus from the MSA

⇒ POA [Lee et al., 2002]
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Third step: Compute consensus of a window

POA (Partial Order Alignment)

Multiple sequence alignment strategy based on partial order
graphs

Two interests:

1 Computes actual multiple sequence alignment

2 Directly builds the DAG representing the multiple alignment
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Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Needleman-Wunsch algorithm
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Third step: Compute consensus of a window

Segmentation strategy

In practice, we use windows of a few hundred bases

POA is time consuming

We developed a segmentation strategy

Compute MSA and consensus for smaller sequences⇒ faster
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Third step: Compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the window’s sequences
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Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai , Ai+1:

1 Ai is followed by Ai+1 in at least N sequences

2 Ai+1 is never followed by Ai
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Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

cons.cons.cons.cons.cons.cons.
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Fourth step: Polish the consensus

Approach

Build a DBG from the window’s sequences

Consensus⇒ solid k -mers in uppercase, weak k -mers in
lowercase

GATCGGGTcatTGCCCGTGTTTATGCGTGtg

Correct lowercase regions

Bordered regions⇒ Traverse the graph to find a path between
solid, anchor k -mers

Extremities⇒ Traverse the graph as much as possible
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Fifth step: Anchor the consensus to the read

Retrieve the corrected template

Get the polished consensus

Locally align it to the LR, around the positions of the window

Aligned factor of the LR replaced by aligned factor of the
consensus

Repeat with other windows (in practice, overlapping)
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Segmentation strategy validation

Results
Simulated PacBio dataset from E. coli, 50x, 12% error rate

Without segmentation With segmentation
Throughput 214,667,382 215,693,736

Error rate (%) 0.0757 0.0722
Runtime 5h31min 7min

Memory (MB) 750 675
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Comparison to state-of-the-art

Datasets

Dataset Number of reads Average length Error rate Coverage
Simulated Pacific Biosciences data
E. coli 30x 16,959 8,235 12.29 30x
E. coli 60x 33,918 8,211 12.28 60x
S. cerevisiae 30x 45,198 8,216 12.28 30x
S. cerevisiae 60x 90,397 8,204 12.29 60x
C. elegans 30x 366,416 8,204 12.28 30x
C. elegans 60x 732,832 8,220 12.28 60x
Real Oxford Nanopore data
D. melanogaster 1,327,569 6,828 14.57 63x
H. sapiens, chr1 1,075,867 6,744 17.60 29x
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Comparison to state-of-the-art

Compared tools

Canu

Daccord

FLAS

LoRMA

MECAT
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Comparison to state-of-the-art

Simulated data, 30x coverage
Total

Dataset Corrector Throughput (Mbp) Error rate (%) Deletions (%) Insertions (%) Substitutions (%) Runtime Memory (MB)

E
.c

ol
i3

0x

Original 140 12.2862 2.6447 8.7973 0.8442 N/A N/A
Canu 130 0.2508 0.0636 0.2001 0.0102 19min 4,613
daccord 131 0.0219 0.0034 0.0090 0.0115 14 min 6,813
FLAS 130 0.2077 0.1490 0.0741 0.0043 12min 1,639
LoRMA 13 0.2969 0.0429 0.1466 0.1322 10min 32,155
MECAT 107 0.1649 0.1328 0.0459 0.0018 1 min 39 sec 1,600
CONSENT 130 0.2013 0.0944 0.1095 0.0163 17 min 10 sec 2,390

S
.c

er
ev

is
ia

e
30

x Original 371 12.283 2.646 8.7937 0.8434 N/A N/A
Canu 227 0.8472 0.2335 0.6393 0.0479 29min 3,681
daccord 348 0.1186 0.0222 0.0368 0.0707 1 h 19 min 31,798
FLAS 345 0.2537 0.1863 0.0828 0.0088 29min 2,935
LoRMA 52 0.4954 0.0798 0.2690 0.1887 46min 31,899
MECAT 285 0.2111 0.1691 0.0574 0.0048 5 min 2,907
CONSENT 345 0.2890 0.1428 0.1386 0.0348 46 min 5,523

C
.e

le
ga

ns
30

x Original 3,006 12.2806 2.6449 8.7926 0.8431 N/A N/A
Canu 2,776 0.2895 0.0682 0.2354 0.0126 9h09min 6,921
daccord
FLAS 2,718 0.3862 0.2656 0.1469 0.0106 3h07min 10,565
LoRMA 258 1.1573 0.2094 0.4686 0.5764 8h19min 31,827
MECAT 2,085 0.2682 0.2135 0.0764 0.0037 48 min 10,535
CONSENT 2,791 0.6300 0.3064 0.2958 0.0878 9 h 36 min 21,819
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Comparison to state-of-the-art

Simulated data, 60x coverage
Total

Dataset Corrector Throughput (Mbp) Error rate (%) Deletions (%) Insertions (%) Substitutions (%) Runtime Memory (MB)

E
.c

ol
i6

0x

Original 279 12.2788 2.6437 8.7919 0.8432 N/A N/A
Canu 219 0.5211 0.1390 0.4045 0.0243 24min 3,674
daccord 261 0.0175 0.0026 0.0062 0.0103 54 min 18,450
FLAS 260 0.1039 0.0907 0.0220 0.0010 38min 2,428
LoRMA 239 0.0660 0.0098 0.0476 0.0147 1h39min 31,682
MECAT 233 0.1011 0.0896 0.0203 0.0008 5 min 2,387
CONSENT 259 0.0590 0,0368 0.0241 0.0037 36 min 4,849

S
.c

er
ev

is
ia

e
60

x Original 742 12.2886 2.6484 8.7963 0.8439 N/A N/A
Canu 600 0.5615 0.1518 0.4309 0.0292 1h11min 3,710
daccord 696 0.0305 0.0055 0.0180 0.0100 2 h 26 min 32,190
FLAS 690 0.1430 0.1215 0.0319 0.0031 1h30min 4,984
LoRMA 634 0.1160 0.0188 0.0778 0.0301 5h25min 31,828
MECAT 617 0.1365 0.1189 0.0286 0.0020 16 min 4,954
CONSENT 690 0.1418 0.0735 0.0650 0,0166 1 h 46 min 11,325

C
.e

le
ga

ns
60

x Original 6,024 12.2825 2.6457 8.7937 0.8432 N/A N/A
Canu 5,119 0.6623 9 h 30 min 7,050
daccord
FLAS 5,614 0.2160 10 h 45 min 13,682
LoRMA 3,388 0.1446 31 h 04 min 32,104
MECAT 4,941 0.1882 2 h 43 min 10,563
CONSENT 5,607 0.4604 27 h 04 min 32,284

Morisse et al. CONSENT 34/40



Introduction Workflow Experiments Conclusion

Comparison to state-of-the-art

Real data

Dataset Corrector
Number

Throughput (Mbp) N50 (bp)
Aligned Alignment Genome Total

of reads reads (%) identity (%) coverage (%) Runtime Memory (MB)

D
.m

el
an

og
as

te
r Original 1,327,569 9,064 11,853 85.52 85.43 98.47 N/A N/A

Canu 829,965 6,993 12,694 98.05 95.20 97.89 14 h 04 min 10,295
daccord
FLAS 855,275 7,866 11,742 95.65 94.99 98.09 10 h 18 min 18,820
LoRMA 1,125,279 6,386 669 97.05 98.47 94.76 23 h 51 min 65,536
MECAT 849,704 7,288 11,676 99.87 96.52 97.34 1 h 54 min 13,443
CONSENT 1,065,621 8,178 12,297 99.26 96.72 98.20 38 h 51,361

H
.s

ap
ie

ns

Original 1,075,867 7,256 10,568 88.24 82.40 92.46 N/A N/A
Canu
daccord
FLAS1 670,708 5,695 10,198 99.06 91.00 92.37 4 h 57 min 14,957
LoRMA 737,198 1,247 186 96.50 97.83 28.62 13 h 07 min 50,435
MECAT1 667,532 5,479 10,343 99.95 91.69 91.44 1 h 53 min 11,075
CONSENT 869,462 6,349 10,839 99.59 93.00 92.40 8 h 30 min 45,869

1 ultra-long reads were filtered out
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Comparison to state-of-the-art

Contigs polishing
Dataset Method Contigs Aligned contigs NGA50 NGA75 Genome coverage Runtime Memory (MB)

Original 1 1 0.89 N/A N/A
E. coli 60x RACON 1 1 4,663,914 4,663,914 99.90 2 min 628

CONSENT 1 1 4,637,588 4,637,588 99.90 7 min 4,192
Original 29 29 0.87 N/A N/A

S. cerevisiae 60x RACON 29 29 539,433 346,116 96.09 5 min 1,673
CONSENT 29 29 535,665 334,556 96.12 3 min 9,232

Original 47 46 0.95 N/A N/A
C. elegans 60x RACON 47 47 5,073,456 2,349,027 99.71 46 min 14,264

CONSENT 47 47 3,737,577 2,073,591 99.57 1 h 42 min 32,144
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Take-home messages

CONSENT: new long read self-correction method

Introduces a segmentation strategy allowing fast computation of
MSA

Compares well to the SOTA

Only method scaling to ONT ultra-long reads

Available at: https://github.com/morispi/CONSENT
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Future works

Optimize the parameters (size of the windows, of k , etc)

Reduce memory consumption⇒ Split Minimap2 index

Reduce runtime: Deeply covered windows

Computing MSA is expensive

Probably repeats⇒ Validation strategy

Segmentation strategy seems promising⇒ Apply it to a greater
scale
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The end!

Thanks for your attention!

Questions?
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